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Conservation Laws for Cosmological Perturbations 
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We briefly recall the problem of defining conserved quantities such as energy in 
general relativity, and the solution given by introducing a symmetric background. 
We apply the general formalism to perturbed Robertson-Walker spacetimes with 
de Sitter geometry as background. We relate the obtained conserved quantities 
to Traschen's integral constraints and mention a few applications in cosmology. 

1. I N T R O D U C T I O N  

Consider Maxwell 's  equations: 

D~F ~'~ = p.oj ~ (1) 

where the electromagnetic tensor is F~v = 3~,A~ - O~A~, A~ being the vector 
potential, where j"~ is the electromagnetic current, IXo is a coupling constant 
between the current and the field it creates, and D~, is the covariant derivative 
associated with the metric g ~  (with determinant g). Since F~v is ant isymmet-  
ric, they can be rewritten as 

=  o,Fqj  (2) 

They therefore yield a conservation law and hence an integral equation. 
Indeed we have, applying Gauss '  theorem, 

O~(, , /"~j  ") = 0 = *  00 fv  , f Z ~ j o  dV = - f a y  , , / -~ j i  dSi (3) 

t Ddpartement d'Astrophysique Relativiste et de Cosmologie, UPR 176 du Centre National de 
la Recherche Scientifique, Observatoire de Paris, 92195 Meudon. France. 

z DAMTP, University of Cambridge, Cambridge CB3 9EW, England. 

2461 
0020-7748/97/1100-2461 $12.50/0,0 I ~97 Plenu m PuNishing Corporation 



2462 Deruelle and Uzan 

If the volume V is taken to be the whole space and if there are no currents 
on the boundary OV, then we have that the total charge e defined as 

e - - -  ,f-L-~jo dV (4) 

is constant: O0e = O. Using Maxwell's equations (2), we can moreover express 
it as a surface integral: 

1 ( , / c ~  F~ dSi (5) e ~ -  - -  

~o Ja v 

On another hand one can construct a tensor, the stress-energy tensor: 

l 
-p~oT~v - F~,F~ + ~ g~,vg~F~ (6) 

which, thanks to Maxwell's equations again, is such that 

D~T ~ + F ~.j v. = 0 (7) 

Outside the charges and in Minkowski space-time in Cartesian coordinates, 
this equation is also a conservation law and yields another integral equation: 

Ov'T~ = O ~ O~ fv T~ dV = - fev Ti" dSi (8) 

If the field decreases fast enough at infinity, the Cartesian vector P" defined by 

pv =_ fv T~ dV (9) 

is therefore constant: 0oP" = 0. 
These conservation laws and integral equations (3) and (8) are mere 

consequences of Maxwell's equations. In other words, given charges in arbi- 
trary motion, the field F~.~ they create is such that the total charge defined 
by (4)and, Cartesian coordinates being used, the energy-momentum vector 
defined by (9) are constant if the boundary terms are zero. In addition, the 
charge is also given by the surface integral (5). 

Now it is well known that those laws and equations reflect in fact the 
symmetries of the theory. Indeed the conservation of the charge, equation 
(3a), follows from the requirement that, like Maxwell's equations, the action 
they derive from 

S - xf-L-gL d4x with L = x / c ~  ~A~, 41~o 
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be the same (up to a total derivative) in a gauge transformation: A~ --* A~, 
- 0 j .  

As for the conservation of the stress-energy tensor (Sa), it reflects the 
homogeneity and isotropy of Minkowski spacetime. Indeed, in Cartesian 
coordinates the action (10) does not depend explicitly on the coordinates x~; 
thus computing O~L using Maxwell's equations then yields a tensor which, 
after symmetrization, is nothing but (6) (in Cartesian coordinates) and is 
conserved (Noether's theorem). 

This (symmetric) stress-energy tensor T~ can also be defined as the 
functional derivative of the action with respect to the metric, and equation 
(7) follows from the fact that the action is a scalar. Minkowski space-time 
being maximally symmetric, it possesses 10 Killing vector ~ ,  such that D~,~ 
+ D~I~, = 0. Hence outside the charges, equation (7) yields 

O~(,f-L--gT~t~ ~) = 0 (1 la) 

which is the generalization to any coordinate system of the conservation law 
(8a). The integral equation which ensues is 

OoP(f~) = - ~  ,f-~Ti~{~ dSi where P({)--= ( ,f'L--gT~{" dV ( l ib)  
�9 J d  V Jv 

In Cartesian coordinates and for the four ~ corresponding to time or space 
translations, P(~) is the vector defined by (9) whose constancy (for an isolated 
system) therefore reflects the symmetries of Minkowski spacetime. 

In general relativity, first, gauge invariance and invariance under coordi- 
nate transformations are one and the same thing, so that the notions of 
"charge" and "energy-momentum" of the gravitational system coalesce. 

Second, Einstein's equations 

G~,~ = KT~v (12) 

where G~,v is Einstein's tensor, K = 8"lTa/c 4 Einstein's coupling constant, and 
T~,v the stress-energy tensor of matter (defined as the functional derivative 
of the matter action with respect to the metric), imply, via the Bianchi identity, 

D~T v'~ = 0 (13) 

Equations (13) [which are the gravitational analogue of equation (7)] 
can be manipulated in various ways to yield conservation laws [similar to 
equations (3a) or (8a)]. Landau and Lifschitz (1962) rewrote them as 

O~[(-g)(T ~" + t~'~,)] = 0 (14) 
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where ~t~ is some expression quadratic in the Christoffel symbols. Hence 
the quantity 

P~ = fv (-g)(T~ + ~t~) dV (15) 

is constant if surface terms vanish. It is the gravitational analogue of the 
charge (4) or the electromagnetic energy-momentum vector (9). And, like 
the charge [see equation (5)], it can be expressed as a surface integral, in 
terms ofa  "superpotential" from which the pseudotensor ~ .  derives. However, 
Pit. is not a vector under general coordinate transformations and moreover 
has the wrong tensorial weight. Hence it does not really qualify as a proper 
definition of energy-momentum. 

Einstein on the other hand applied in 1915 Noether's theorem to the 
Hilbert action from which his equations derive. Indeed, as a functional of 
the metric it does not depend explicitly on the coordinates. He therefore also 
obtained conservation laws: 

c3~[,f-L--g(T~ + t~v)] = 0 (16) 

where t~  is yet another expression quadratic in the Christoffel symbols. 
Hence the quantity 

e[  = fv 4;-L-g(T~ + t~ dV (17) 

is also constant if surface terms vanish, and can also be written as a surface 
integral. Despite the fact that it is obtained from Noether's theorem and 
therefore reflects some properties of spacetime and has the right tensorial 
weight, (17) does not qualify either as a proper definition of energy-momen- 
tum, as it is not a vector under general coordinate transformations. Moreover, 
~ = g~Pt[~ is not symmetric and cannot define an angular momentum [this 
is in fact this problem which led Landau and Lifschitz to (14)-(15)]. 

As advocated by many authors (for reviews see Katz, 1996; Katz et al., 
1996) a possible way out of this problem of defining energy and momentum 
(and angular momentum) in general relativity is to introduce a background 
spacetime. We now briefly summarize this approach, following Deruelle et 
al. (1997). 

2. DEFINING ENERGY, ETC., WITH RESPECT TO A 
BACKGROUND 

Consider a spacetime (At, g~(xX)), a background (~ ,  ~,~(xX)), and a 
mapping between these two spacetimes. 
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Take as Lagrangian density for gravity 

l ^p.u p cr p , j  ~ = ~ [g (A~A~ - A~A,~) - ( ~  - g~)  R~1 (18) 

where we have introduced the difference A~v between Christoffel symbols 
in At and ~ and where R~'~ is the Ricci tensor of the background. A caret 
denotes multiplication by , f - ~ .  Since the "A" are tensors, ~ a  is a true 
scalar density. 

If we now perform a small displacement A~:~ = ~'Ak, where ~ is an 
arbitrary vector field and AR an infinitesimal parameter, and use the fact that 
~ a  is a scalar density, we have that, with L~ denoting the Lie derivative, 

L ~ a  - 3~(.~a~ ~) = 0 (19) 

Computing explicitly L;..~c from (18), it can be shown (Katz et al., 1996) 
that there exists an identically conserved vector ?r analogous to the electro- 
magnetic current, such that 

O~j ~ = 0 (20a) 

yielding the integral equation 

3oP(~) = - (  ]i dSi, where P(~)-= ~ ~0 dV (20b) 
I 

J3V  Jv 

Equations (20a) and (20b) are the gravitational analogue of equations (3) 
and (1 la), (1 lb). 

Now it also follows from (20a) that there exists an antisymmetric tensor 
) t~ l  such that 

i~ = c3,)t~l (21) 

This is the gravitational analogue of Maxwell's equation (2). Hence, just like 
the electric charge [see equation (5)], P(~) can be expressed as a surface 
integral: 

P(~) = [ 3 ~ dS i (22) 
Je V 

The explicit expressions for P and for j ~ l  can be found in Katz et al. 
(1996; see also Deruelle et al., 1997). 

The equalities (20)-(22) are valid for all {g~, ~"~, {~}. They become 
the Noether conservation laws when the vectors {~ are Killing vectors of the 
background. Therefore, in order to obtain the maximum number of Noether 
conservation laws, one is led to consider a background with maximal symme- 
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try, in which case ten integral equations (one for each Killing vector) can be 
written. If the Killing vector refers to the time translations in Minkowski 
spacetime or the quasi-time translations of de Sitter spacetime, then the 
corresponding quantity P(~) will be called energy. When one uses the three 
Killing vectors associated with the Lorentz rotations of Minkowski or the 
quasi-Lorentz rotations of de Sitter spacetimes, P(~) will be the "position of 
the center of mass," etc. The introduction of a maximally symmetric back- 
ground thus allows us to define an energy, etc., even if the physical spacetime 
does not possess symmetries, globally or asymptotically. The justification 
for such a terminology can be found in, e.g., Katz et al. (1996). 

3. THE ENERGY OF C O S M O L O G I C A L  PERTURBATIONS 
WITH RESPECT TO DE SITTER SPACE 

We now apply the formalism summarized above to a perturbed Robert- 
son-Walker spacetime with metric 

ds 2 = dt  2 - a2(t)~ij + hij) dx i dxJ (23) 

f i / i s  the metric of a 3-sphere, plane, or hyperboloid, depending on whether 
the index k = ( + 1 ,  0, - 1 ) :  

~)ira~jnffmxn with r z ~- ~ ijXtX j (24) 
f y =  ~3ij + k l _ k r  2 

The scale factor a(t) is determined by Friedmann's equation and ho(x~ ) is a 
small perturbation of f o  in a synchronous gauge. The maximally symmetric 
background is chosen to be de Sitter space with the same spatial topology 
as the physical perturbed Robertson-Walker spacetime and its metric will be 
written as 

d-s 2 = ~ ( t )  z dt  2 - -d(t)2fj dx  i cL~ j (25) 

Equation (25) contains a definition of the mapping for each point of the t = 
const, hypersurface, up to an isometry. The function qs(t) defines the mapping 
of the cosmic times [and the explicit expression for the scale factor ~(t)]. 

The explicit expressions of the ten de Sitter Killing vectors when the 
metric is written under the form (25) can be found in, e.g., Deruelle et  

al. (1997). 
The zeroth-order conserved quantities PRW(~) have been defined and 

studied by Katz et  aL (1996). Their perturbations at first order were given 
in Deruelle et  al. (1997). The final result is P(~) = PRW(~) + 8P(~), with 

8P(~) = ~ 8TO~.  + 2 ~ o  d V  + dS, = ([~t + ~I  t) dSt 
V V 

(26) 
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where we have introduced the notations K[3 - gtla - a I'8 and h ~ -2fOh o, 
and where the explicit expressions of the X-dependent surface terms M t and 
B I can be found in Deruelle et al. (1997). 

Using the explicit expressions of the de Sitter/Robertson-Walker Killing 
vectors corresponding to spatial translations, ~ = P~, the total momentum 
of the perturbations is thus defined as 

~Pi(P)~a3 fvdV~T~ + fa lflldSt= fa (B~ + lf4~)dSl (27) 
V V 

Hence the total momentum is the sum of a background and mapping-indepen- 
dent volume integral plus a surface term which does depend on the background 
and the mapping. The same holds for the total angular momentum. 

When it comes now to the de Sitter Killing vectors corresponding to 
quasi-time translations (~' = T ~) and quasi-Lorentz rotations ([j" = K~'), 
equations (26) can be written under the form 

8P(T) = ~ 8PTr(T ) + f(f4 t + 0 t) dSt (28) 
V 

I 1 8P}~(K) 
1 

+ I~v (l('tti + Dti) dSt for k :~ 0 

1 8U(P)+Io (~tit +~it) d& for k = O  
2Ha2 v 

(29) 

where 

~3PTr(T) = a3 fv (~P - I-ff3T~ dV = fav Bt(T) dSt (30) 

fv dV ~P/rr(K) ~ a3 [x/~P + H~)T~ - xtx/)] ~/1 - kr 2 

= for BU(K) dSt for k :r 0 

=Iav [~li(K) dSt for k = 0 

(31) 
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and where the explicit expressions for the various surface terms can be found 
in Deruelle et al. (1997). 

Hence, the energy and motion of  the center of  mass of  the perturbations 
are also the sum of volume integrals which are, up to the overall function 
of time 4 ,  background and mapping independent, plus surface terms which 
do depend on the background and the mapping. 

Turning to localized perturbations for which all surface integrals vanish, 
we see from the form (27)-(31) for the conserved quantities that the resulting 
constraints are background and mapping independent. As shown in Deruelle 
et al. (1997), they are equivalent to Traschen's (1984) constraints, which have 
been widely used for treating localized perturbations (also called "causal" or 
"active") (see, e.g., Abbott etal. ,  1988; Traschen, 1985; Traschen and Eardley, 
1986; Veeraraghavan and Stebbins, 1990; Traschen et al., 1986; Uzan and 
Turok, n.d.). 
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